Properties of single fasteners

FP 1402 "Basis of structural timber design - from research to standards"

Short-Term Scientific Missions
Final Report

Table des matières

Objectives 2
Development of a database 3
Data analysis 5
1 Laterally loaded connections: tensile strength of wire, tensile capacity and yield moment 5
1.1 Tensile strength of wire $\boldsymbol{f} \boldsymbol{u}$ [MPa] 6
1.2 Tensile capacity (of the nail) $\boldsymbol{F t}[\mathrm{kN}]$ 7
1.3 Yield moment $\boldsymbol{M} \boldsymbol{y}[\mathrm{kNm}]$ 8
1.4 My, fu, Ft + Geometry (d, dn, d1, dk) 10
1.4.1 Linear regression $\boldsymbol{a}=\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ 11
1.4.2 Linear regression with logarithmic transformations $\boldsymbol{\operatorname { l n }} \boldsymbol{a}=\boldsymbol{\operatorname { l n }} \boldsymbol{b} \boldsymbol{x}+\boldsymbol{\operatorname { l n }}(\boldsymbol{c})$ 11
2 Axially loaded connections 13
2.1 Withdrawal strength 14
2.2 Head pull-through strength 16
Conclusion and further work 18
Figures 19
Graphs 19
References 20

Objectives

This Short Term Scientific Mission takes place in COST action FP1402 - "Basis of structural timber design - from research to standards", in Working Group 3 - "Connections". The purpose of this action is to bring scientific results and the specific information needed by designers, industry, authorities and code committees together. The main task of the Working Group 3 (Connections) is the collection and harmonization of methods and parameters to determine the load-carrying of dowel-type fasteners.

Karlsruhe University of Technology is a leading lab in the field of timber engineering. Under the supervision of Prof. Hans Blass, many tests have been done to characterize the properties of single fasteners. In the context of the forthcoming revision of EC5, this Short Term Scientific Mission at Karlsruhe University of Technology is divided in two main parts:

- The first one is based on the collect and classification of all experimental results about the characterization of fastener with nails (development of a database).
- In the second part, we look how a property may be correlated to another one in an attempt to explain one from the other.

Figure 1 - Different nails

Development of a database

The first part of the work consisted in creating a database that brings experimental results together. There are only fasteners with nails (most of them are threaded nails). Currently, the database includes results of 96 reports and approaches the following fastener and system parameters:

- Geometrical parameters of nails
- Nominal diameter d [mm] (diameter given by the industry)
- Nominal diameter $d_{n}[\mathrm{~mm}]$ (diameter after measurement in lab)
- Head diameter D [mm]
- Inner diameter $d_{k}[\mathrm{~mm}]$
- Outer diameter $d_{1}[\mathrm{~mm}]$
- Nominal length l [mm] (length given by industry)
- Nominal length $l_{n}[\mathrm{~mm}$] (length after measurement in lab)
- Peak length l_{p} [mm]
- Threaded length $l_{g}[\mathrm{~mm}]$
- Ring length t [mm]
- Head thickness s [mm]

- Tensile test parameters
- Tensile strength of wire f_{u} [MPa]
- Tensile capacity (of the nail) $F_{t}[\mathrm{kN}]$
- Bending test parameters
- Yield moment $M_{y}[\mathrm{kNm}]$
- Withdrawal test parameters
- Density $\rho\left[\mathrm{kg} / \mathrm{m}^{2}\right]$
- Effective length $t_{\text {pen }}[\mathrm{mm}]$
- Axial force $F_{a x}[\mathrm{kN}]$
- Withdrawal strength $f_{a x}=\frac{F_{a x}}{d \times t_{p e n}}$ [MPa]
- Head pull-through test parameters
- Density $\rho\left[\mathrm{kg} / \mathrm{m}^{2}\right]$
- Axial force $F_{a x}[\mathrm{kN}]$
- Head pull-through strength $f_{\text {head }}=\frac{F_{\text {head }}}{D^{2}}$ [MPa]
- Other: stainless steel, galvanized or not, fire protection or not, etc.
- Embedment strength was not considered in this mission.

The structure of the database is summarized on Table 1. The number of data for each parameter is given on Table 2.

Table 1 - Summary of the database

N° of report	Type of nail	f_{u} $[\mathrm{MPa}]$					F_{t} $[\mathrm{kN}]$	M_{y} $[\mathrm{kNm}]$	\cdots	D $[\mathrm{~mm}]$					d_{n} $[\mathrm{~mm}]$	d_{k} $[\mathrm{~mm}]$	\ldots	Stainless steel Y / N	Galv Y / N	\cdots

Table 2 - Number of data for each parameter

Geometry D, d_{n}, d_{k}, d_{1}	$\begin{gathered} f_{u} \\ {[\mathrm{MPa}]} \end{gathered}$	$\begin{gathered} F_{t} \\ {[\mathrm{kN}]} \end{gathered}$	$\begin{gathered} M_{y} \\ {[\mathrm{kNm}]} \end{gathered}$	Withdrawal parameter		Head pull-through parameter	
$\begin{gathered} l_{n}, l_{g}, l_{p}, t \\ {[\mathrm{~mm}]} \end{gathered}$				$\begin{gathered} \rho \\ {\left[\mathrm{kg} / \mathrm{m}^{3}\right]} \end{gathered}$	Rax [kN]	$\begin{gathered} \rho \\ {\left[\mathrm{kg} / \mathrm{m}^{3}\right]} \end{gathered}$	Rax [kN]
7000-8250	1082	1066	2981	3561		940	

Data analysis

The second part of the work aimed to analyse the assembled data and see where we can simplify/unify design rules, etc. Stainless steel nails were not considered.

1 Laterally loaded connections: tensile strength of wire, tensile capacity and yield moment

Figure 4 - Laterally loaded connections ${ }^{1}$
In mechanics, the yield moment is the moment taken at the elastic limit and is expressed as follow:

$$
M_{y}=\frac{d^{3} \times f_{y}}{6}
$$

Where f_{y} is the yield strength and d the diameter of the nail. The characteristic yield moment $M_{y, R k}$ for the different fasteners with nails in Eurocode 5 (EC5) is summarized in Table 3, where f_{u} is the tensile strength of wire and d the diameter of the nail.

Table 3 - Characteristic yield moment for nails fasteners (EC5)

Nails	
Smooth round nails (EC5 equation 8.14)	$M_{y, R k}=0,3 d^{2,6} f_{u}$
Smooth square and grooved nails (EC5 equation 8.14)	$M_{y, R k}=0,45 d^{2,6} f_{u}$
Threaded nails	As stated in BS EN 14592, by testing in accordance with BS EN 409

It is interesting to notice that most nails of the database are round threaded nails. It could be relevant to see if a relationship can be found as for smooth round nails. In this section, each parameter (tensile strength of wire, tensile capacity and yield moment) is analysed with general comments and we try to answer the following questions:

- Can we obtain yield strength f_{y} from tensile strength of wire f_{u} ?
- Can we obtain tensile capacity (of the nail) F_{t} from tensile strength of wire f_{u} ?
- Can we obtain yield moment M_{y} from the other parameters ?

A detailed analysis (regression and calculation of R^{22}) is performed for yield moment.

[^0]
1.1 Tensile strength of wire f_{u} [MPa]

We can see on Graph 1 that the tensile strength ranges from 515 [MPa] to 1142 [MPa] and seems to slowly decrease with the diameter of the wire. However, the low value of $R^{2}\left(R^{2}=0.1602\right)$ shows that data don't fit very well. We notice that some values are under 600 MPa (highlighted in red).

Graph 1

Something interesting we can try with the data is to see if a relationship can be found between the yield strength f_{y} and the tensile strength f_{u}. The yield strength was not measured in the reports of the KIT but we can calculate, using the yield moment equation 1-1.

$$
M_{y}=\frac{d^{3} \times f_{y}}{6} \rightarrow f_{y}=\frac{M_{y} \times 6}{d^{3}}
$$

Figure 5 - Yield strength f_{y} and the tensile strength f_{u}
A handling of the data is necessary. For one report, the mean value of tensile strength was associated to nail diameter d. Graph 2 shows that there is no obvious relationship.

[^1]

Graph 2

1.2 Tensile capacity (of the nail) $\boldsymbol{F}_{t}[\mathrm{kN}]$

The tensile capacity F_{t} ranges from $1.23[\mathrm{kN}](\mathrm{d}=2.1 \mathrm{~mm})$ and $35.5[\mathrm{kN}](\mathrm{d}=6 \mathrm{~mm})$. According to the hereunder chart, the relation between tensile capacity F_{t} and the diameter d of the nail is obvious and seems linear.

Graph 3
It is possible to express this tensile capacity F_{t} as a stress $f_{t, d}$ with equation 1-3. and compare it with the tensile strength of wire f_{u} (see Graph 4). It seems that there is again no relationship.

$$
f_{t, d}=\frac{F_{t}}{\frac{d \pi}{4}}
$$

Graph 4

1.3 Yield moment $M_{y}[\mathrm{kNm}]$

As expected, Graph 5 shows that yield moment M_{y} and diameter d fit quite well. However, some data seem to be outside the trend (highlighted in red). They are summarized in Table 4. It is important to notice that for these data, no tensile tests were performed.

Graph 5

Table 4 - Data outside the trend

d [mm]	My [kNm]	d [mm]	My [kNm]
4	15.4	5.1	37.25
4	15.4	5.1	36.98
4	15.7	5.1	37.05
4	15.5	5.1	36.97
4	14.8	5.1	36.4
4	18.2	5.1	39.38
4	18.3	5.1	39
4	18.5	5.1	39.23
4	18.2	5.1	39.45
4	18.7	5.1	39.44
4.2	18.5	5.1	37.2
4.2	18.67	5.1	36.6
4.2	18.17	5.1	37.7
4.2	18.75	5.1	37.2
4.2	17.83	5.1	36.2
4.2	19.3	5.1	37.7
4.2	20.7	5.1	35.3
4.2	21.3	5.1	34.3
4.2	20.7	5.1	36
4.2	21.7	5.1	35
4.2	19.8	5.1	37
4.2	20	5.1	36.5
4.2	18.8	5.1	35.5
4.2	19	5.1	37.67
4.2	18.8	5.1	37.83

We can find two relationships from two different sources that define the yield moment according to other parameters:

- In Eurocode 5 (equation 8.14) for round smooth nails:

$$
M_{y, k}=0,3 d^{2,6} f_{u}
$$

- In mechanics:

$$
M_{y}=\frac{d^{3} f_{y}}{6}
$$

The yield strength f_{y} is not calculated and consequently, we will replace it by the tensile strength of wire f_{u}. Another assumption is that we only use mean values. As a result, equations 1-4 and 1-5 becomes:

$$
M_{\text {Euro }}=0,3 d^{2,6} f_{u, \text { mean }}
$$

$$
M_{\text {mec }}=\frac{d^{3} f_{u, \text { mean }}}{6}
$$

Graph 6 shows the ratio $M_{y} / M_{\text {Euro }}$ and $M_{y} / M_{m e c}$ (M_{y} is the Yield moment coming from the experimental tests). The safe area is highlighted is green. The two distributions are quite different for small diameters but are closer for large diameters (especially $d=4[\mathrm{~mm}]$ and $d=6[\mathrm{~mm}]$). It is interesting to notice that $M_{y} / M_{\text {Euro }}$ gives a lot a results in the unsafe area for small diameters of nails.

Graph 6

1.4 $\mathrm{My}, \mathrm{fu}, \mathrm{Ft}+$ Geometry $\left(d_{,} d_{n}, d_{1}, d_{k}\right)$

With the software SAS (statistical analysis software), we try in this section to find relationships between the following parameters:

- Diameter d [mm] (diameter given by industry)
- Nominal diameter $d_{n}[\mathrm{~mm}]$ (diameter after measurement)
- Inner diameter $d_{k}[\mathrm{~mm}]$
- Outer diameter $d_{1}[\mathrm{~mm}]$
- Tensile strength of wire f_{u} [MPa]
- Tensile capacity (of the nail) $F_{t}[\mathrm{kN}]$
- Four stress forms of the tensile capacity [MPa] :

$$
f_{t, d}=\frac{F_{t}}{\frac{\pi^{2} d}{4}}, f_{t, d_{n}}=\frac{F_{t}}{\frac{\pi^{2} d_{n}}{4}}, f_{t, d_{1}}=\frac{F_{t}}{\frac{\pi^{2} d_{1}}{4}}, f_{t, d_{k}}=\frac{F_{t}}{\frac{\pi^{2} d_{k}}{4}}
$$

- Yield moment $M_{y}[\mathrm{kNm}]$

We calculate mean values for f_{u} and F_{t} (and consequently for $f_{t, d}, f_{t, d_{n}}, f_{t, d_{1}}$ and $f_{t, d_{k}}$). Two type of regressions are explored:

- Linear regression $a=b x+c$
- Linear regression with logarithmic transformations $\ln a=\ln b x+\ln c$

1.4.1 Linear regression $a=b x+c$

The hereunder table shows R^{2} values. The highest values are highlighted in red. As expected, we find strong links between the different types of diameters, yield moment and tensile capacity.

Table 5- R^{2} for Linear regression $a=b x+c$

	d	d_{n}	d_{k}	d_{1}	M_{y}	f_{u}	F_{t}	$f_{t, d}$	$f_{t, d_{n}}$	$f_{t, d_{k}}$	$f_{t, d_{1}}$
d		0.989	0.974	0.986	0.926	0.289	0.960	0.002	0.005	0	0.006
d_{n}			0.982	0.986	0.914	0.304	0.955	0.002	0.011	0.001	0.009
d_{k}				0.964	0.88	0.267	0.933	0.003	0.014	0.009	0.007
d_{1}					0.925	0.288	0.956	0.003	0.011	0	0.018
M_{y}						0.245	0.943	0.004	0.012	0	0.014
f_{u}							0.227	0.042	0.069	0.014	0.045

Table 6 gives the R^{2} value for the relationship between $M_{y} / f_{u}\left(M_{y} / f_{t, d}\right)$ and the different types of diameters. The values are high but can be improved.

Table 6- R^{2} for Linear regression $a=b x+c$

	d	d_{n}	d_{k}	d_{1}
M_{y} / f_{u}	0.882	0.887	0.843	0.895
$M_{y} / f_{t, d}$	0.887			

1.4.2 Linear regression with logarithmic transformations $\ln (a)=\ln (b) x+\ln (c)$

It seems relevant to approach the following relationship:

$$
\ln (a)=\ln (b) x+\ln (c) \rightarrow a=\exp (c) b^{x}
$$

Table 7 gives R^{2} values but for the logarithm of the variable. The highest values are highlighted in red.
Table 7- R^{2} for linear regression of the logarithm $\ln a=\ln (b) x+\ln (c)$ or $a=\exp (c) b^{x}$

	$\ln \left(d_{n}\right)$	$\ln \left(d_{k}\right)$	$\ln \left(d_{1}\right)$	$\ln \left(M_{y}\right)$	$\ln \left(f_{u}\right)$	$\ln \left(F_{t}\right)$	$\ln \left(f_{t, d}\right)$	$\ln \left(f_{t, d_{n}}\right)$	$\ln \left(f_{t, d_{k}}\right)$	$\ln \left(f_{t, d_{1}}\right)$
$\ln (d)$	0.986	0.968	0.982	0.941	0.289	0.911	0.005	0.002	0.011	0.003
$\ln \left(d_{n}\right)$		0.979	0.984	0.926	0.011	0.903	0.006	0	0.006	0.002
$\ln \left(d_{k}\right)$			0.959	0.894	0.263	0.869	0.002	0	0	0.001
$\ln \left(d_{1}\right)$				0.912	0.294	0.881	0.002	0	0.005	0
$\ln \left(M_{y}\right)$					0.260	0.940	0.045	0.034	0.061	0.041
$\ln \left(f_{u}\right)$						0.204	0.028	0.052	0.005	0.029

Table 8 gives the R^{2} values for the relationship between $M_{y} / f_{u}\left(M_{y} / f_{t, d}\right)$ and the different types of diameters. The most relevant relationship involves the same parameters than the ones given by EC 5 and is highlighted in red.

Table 8- R^{2} for linear regression of the logarithm $\ln a=\ln (b) x+\ln (c)$ or $a=\exp (c) b^{x}$

	d	d_{n}	d_{k}	d_{1}
M_{y} / f_{u}	0.937	0.928	0.887	0.911
$M_{y} / f_{t, d}$	0.956			

Graph 7 shows that $\ln \left(\frac{M_{y}}{f_{u}}\right)$ fit quite well with $\ln (d)$. Considering that $f_{u}=f_{u, \text { mean }}$, we obtain the following regression:

$$
M_{y}=0.162 d^{3.02} f_{u, \text { mean }}
$$

The equation 1-11 seems close to equation 1-7 (given by mechanics).

Graph 7
Another analysis is made with characteristic values calculated in each report (with a log-normal distribution):

$$
\ln \left(M_{y, R k}\right)=\overline{\ln \left(M_{y}\right)}-k \sigma_{\ln \left(M_{y}\right)}
$$

Where $\overline{\ln \left(M_{y}\right)}$ is the mean, $\sigma_{\ln \left(M_{y}\right)}$ the standard deviation and k a coefficient that depends on the fixed probability (here, 5% and so $k=1.64$). We obtain a similar regression than before as showed in Graph 8. The equation of the regression is similar to equation 1-11:

$$
M_{y, R k}=0.15 d^{3.06} f_{u k}
$$

Graph 8

2 Axially loaded connections

Figure 6 - Axially loaded connections ${ }^{3}$
The value of the axial strength of connections with nails is defined as follow in EC 5:
Table 9 - Axially loaded connections in EC 5

Nails	
Smooth round nails (EC5 equation 8.24)	$F_{a x, R k}=\left\{\begin{array}{l}f_{a x, k} d t_{\text {pen }} \\ f_{a x, k} d t+f_{\text {head }, k} D^{2}\end{array}\right.$
Other nails (EC5 equation 8.23)	$F_{a x, R k}=\left\{\begin{array}{l}f_{a x, k} d t_{\text {pen }} \\ f_{\text {head }, k} D^{2}\end{array}\right.$

[^2]$f_{a x, k}$ and $f_{\text {head,k }}$ are respectively withdrawal strength and head pull-through strength and are defined in Table 10.

Table 10 - Withdrawal strength and head pull-through strength in EC 5

Nails	
Smooth round nails (EC5 equation 8.25-26) with an efficient length higher than $12 d$	$f_{\text {ax,k }}=20 \times 10^{-6} \rho_{k}^{2}$ $f_{\text {head, } k}=70 \times 10^{-6} \rho_{k}^{2}$
Other nails (EC5 equation 8.14)	By testing in accordance with EN 1382, EN 1383 and EN 14358.

In this section, we will see if it is possible to calculate for threated nails $F_{a x}, f_{a x}$ and $f_{\text {head }}$ from geometrical parameters and wood density and have an equation similar to equation 8.25-26 in Eurocode 5.

2.1 Withdrawal strength

Graph 9 shows the relationship between the axial force and the shear area ($t_{p e n} \times d$). It seems linear (it not surprising: if $t_{p e n}$ increases, $F_{a x}$ increases) but R^{2} is not so high because of the scattering of the data.

Graph 9

However, Graph 9 is not very relevant because an important parameter is missing: the density ρ of the wood. It could be interesting to see if a relationship similar to equation in Table 10 can be found for non-smoothed nail. Nonetheless, Graph 10 shows that withdrawal strength $f_{a x}$ doesn't fit with the density ρ.

Graph 10
A similar analysis than for the yield moment in section 1.4 was led in order to show if it exists a relationship between various geometrical parameters that can influence the axial strength. However, the calculation of the R^{2} doesn't give more information than before. Highest values are highlighted in red.

Table 11- R^{2} for Linear regression $a=b x+c$

	ρ	$t_{\text {pen }}$	d	d_{n}	d_{k}	d_{1}	$d_{1}-d_{k}$	l_{g}	t
$F_{a x}$	0.01	0.647	0.471	0.472	0.458	0.472	0.235	0.375	0.118
$F_{a x} / \rho$		0.623	0.487	0.487	0.470	0.488	0.256	0.374	0.145
$f_{a x}$	0.052	0.002	0.038	0.033	0.035	0.032	0.006	0.001	0.020
$f_{a x} / \rho$		0.003	0.033	0.029	0.033	0.028	0.002	0.001	0.008

Table 12- R^{2} for linear regression of the logarithm $\ln a=\ln (b) x+\ln (c)$ or $a=\exp (c) b^{x}$

	$\ln (\rho)$	$\ln \left(t_{p e n}\right)$	$\ln (d)$	$\ln \left(d_{n}\right)$	$\ln \left(d_{k}\right)$	$\ln \left(d_{1}\right)$	$\ln \left(d_{1}-d_{k}\right)$	$\ln \left(l_{g}\right)$	$\ln (t)$
$\ln \left(F_{a x}\right)$	0.018	0.653	0.493	0.499	0.484	0.499	0.182	0.35 0	0.331
$\ln \left(\frac{F_{a x}}{\rho}\right)$		0.652	0.517	0.519	0.500	0.521	0.200	0.35 5	0.154
$\ln \left(f_{a x}\right)$	0.052	0.002	0.030	0.024	0.027	0.024	0	0	0.012
$\ln \left(\frac{f_{a x}}{\rho}\right)$		0.004	0.026	0.022	0.025	0.02	0.001	0	0.003

2.2 Head pull-through strength

The analysis for the head-pull test parameters is similar to section 2.1. Graph 11 shows the relationship between the axial force and the squared head diameter D^{2}. It seems linear (it not surprising, if D increases, $F_{a x}$ increases). R^{2} quite is high.

Graph 11
As far as Graph 12 is concerned, observations are similar to Graph 10.

Graph 12

The calculation of R^{2} doesn't give more information than before.
Table 13- R^{2} for Linear regression $a=b x+c$

	ρ	d	D
$F_{a x}$	0.151	0.794	0.795
$F_{a x} / \rho$	0.067	0.824	0.81
$f_{a x}$	0.243	0.038	0.062
$f_{a x} / \rho$	0.022	0.783	0.817

Table $14-R^{2}$ for linear regression of the logarithm $\ln a=\ln (b) x+\ln (c)$ or $a=\exp (c) b^{x}$

	$\ln (\rho)$	$\ln (d)$	$\ln (D)$
$\ln \left(F_{a x}\right)$	0.208	0.722	0.723
$\ln \left(\frac{F_{a x}}{\rho}\right)$	0.077	0.771	0.767
$\ln \left(f_{a x}\right)$	0.232	0.044	0.071
$\ln \left(\frac{f_{a x}}{\rho}\right)$	0.037	0.940	

Conclusion and further work

The objective of the work was firstly to develop a database for nails. It will be filled during further works and a similar work will be done for screws.

As far as the second point of the mission is concerned, the main conclusion for data analysis can be summarized in two points:

1. Laterally loaded connections: it seems that the yield moment of threaded round nails can be calculated from tensile strength of the wire and diameter of the nail, as it is done in EC5 for smooth nails. However, the relationship seems closer to equation given by mechanics.
2. Axially loaded connections: Head pull-through and withdrawal strength can't be obtained from other parameters.

Results will be presented at the COST conference held at the KTH, Stockholm (Sweden) in March 2016 ($10^{\text {th }}-11^{\text {th }}$ March) and hosted by Dr. Andreas Falk.

Figures

Figure 1 - Different nails 2
Figure 2 - Nail 3
Figure 3 - Bending test and withdrawal test 4
Figure 4 - Laterally loaded connections 5
Figure 5 - Yield strength fy and the tensile strength fu 6
Figure 6 - Axially loaded connections 13
Graphs
Graph 1 6
Graph 2 7
Graph 3 7
Graph 4 8
Graph 5 8
Graph 6 10
Graph 7 12
Graph 8 13
Graph 9 14
Graph 10 15
Graph 11 16
Graph 12 16

References

1. EN 1995-1-1 Common rules and rules for building, section 8 "Connections", Comité Européen de Normalisation
2. Structural Timber Design to Eurocode 5, 2nd Edition, Jack Porteous, Abdy Kermani, WileyBlackwell, May 2013, pp 395-410

[^0]: ${ }^{1}$ Source: « Timber Connections», Ad Leijten
 http://eurocodes.jrc.ec.europa.eu/doc/WS2008/EN1995_5_Leijten.pdf
 ${ }^{2}$ In statistics, the coefficient of determination, denoted R^{2} or r^{2} and pronounced R^{2}, is a number that indicates how well data fit a statistical model - sometimes simply a line or a curve. An R^{2} of 1 indicates that the regression

[^1]: line perfectly fits the data, while an R^{2} of 0 indicates that the line does not fit the data at all. This latter can be because the data is more non-linear than the curve allows, or because it is random.

[^2]: ${ }^{3}$ Source: «Timber Connections», Ad Leijten http://eurocodes.jrc.ec.europa.eu/doc/WS2008/EN1995_5_Leijten.pdf

