Dr. Felix Scheibmair (New Zealand) The University of Auckland, Dept Civil and Env Engineering Auckland New Zealand <u>f.scheibmair(at)auckland.ac.nz</u> COST FP1402, IPC Member, MC Observer, WG3 Member

Personal	Organisation	Organisation		
Years of experience in relevant field: 6 Expertise: timber connections		Civil and Environmental Engineering (http://www.cee.auckland.ac.nz/) Focus: theoretical and practical research/innovation, design of structures and education/training Facilities: Large scale strong wall/ floor testing facilties		
Degree: PhD. (05.05.2013)	design of struc			
	No. of staff	PhD students	MSc/year	
	4	6	2	
Research projects		• •		
 development of the connection chapter for the Development of design rules for small-dowel to incorporated in the next version of the NZS 3603 standard) 	ype fasteners with bri	ttle behaviour (the	se results are to be	
3. development of design rules for timber momer	nt connection that exh	ibit brittle failure		
4. verification of design rules for self-tapping scree	ews connections that	exhibit brittle failure	9	
Publications				
Franke, B., & Quenneville, P. (2014). Analysis of Veneer Lumber. Engineering Fracture Mechanics		of Radiata Pine tir	nber and Laminated	
Loo, W., Quenneville, P., & Chouw, N. (2014). E	xperimental testing of	a rocking timber s	hear wall with slip-friction	

Loo, W., Quenneville, P., & Chouw, N. (2014). Experimental testing of a rocking timber shear wall with slip-friction connectors. Earthquake Engineering and Structural Dynamics. doi:10.1002/eqe.2413

Zarnani, P. & Quenneville, P. 2014, "Group Tear-Out in Small Dowel-Type Timber Connections: Brittle and Mixed Failure Modes of Multinail Joints", J. Struct. Eng., doi: 10.1061/(ASCE)ST.1943-541X.04014110.

Zarnani, P. & Quenneville, P. 2014, "Strength of timber connections under potential failure modes: An improved design procedure", Construction and Building Materials, 60(2014), p. 81-90.

Zarnani, P. & Quenneville, P. 2014, "Wood Block Tear-out Resistance and Failure Modes of Timber Rivet Connections: A Stiffness-Based Approach", J. Struct. Eng., 140(2), 04013055.

Zarnani, P., & Quenneville, P. (2014). Splitting Strength of Small Dowel-Type Timber Connections: Rivet Joint Loaded Perpendicular to Grain. Journal of Structural Engineering, 140(10)

